Protein Protein Interactions

- functional association (dimers, oligomers)
- amyloid formation
- aggregation

Interactome - protein interactions within a cell

Alternative to Protein Association - Giant Proteins

Fatty acid synthase: - E. coli single proteins

- yeast $\alpha_6 \beta_6$ oligomer (2 200 kDa)

- mammals dimer

Giant Proteins - Cyclosporin synthetase

- non-ribosomal peptide synthetases often large monomeric proteins
- Cyclosporin synthetase: 1.7 MDa
 - 11 amino acid activating domains and transferases

cyclosporin

Why oligomers?

Functional level

- allosteric regulation
- catalytic efficiency (substrate channeling)

Structural level

- errors during protein synthesis
- domain folding in large proteins slower than in isolated domains

Genetic level

- oligomerization far more economical (e.g. virus capsid)

Topology of oligomers

ATCase:

- 2 catalytic trimers
- 3 regulatory dimers

GAPDH

- a tetramer as dimer of dimers

4 M→2 D→T alternative (unlikely): 4 M→D + 2 M → Trimer + M → T

Characteristics of inter-subunit interfaces

surfaces of inter-subunit interfaces:

partially hydrophobic

polar interactions and complementarity

1000 - 3000 Å

stability

specificity

packing density of side chains within interfaces comparable to hydrophobic core (in case of stably associated proteins)

Three classes of inter-subunit interfaces

hydrophobic patch surrounded by polar groups

small hydrophobic areas, polar groups and water evenly <u>distributed</u>

intertwined interface resemble hydrophobic core isolated monomer not stable

Special motifs of protein protein association

Coiled coil - Leucine zipper

Heptad repeat: HPPHPPP coiled coils: dimers, trimers, tetramers

Artificially engineered polyionic peptides

Special motifs of protein protein association Four-helix bundle

Domain swapping

- Domain swapping ——— evolution from monomers to dimers
- product of domain swapping dimers,
 - but also higher oligomers virus capsids
 - ---- aggregation of antithrombin

Domain swapping

swapping

of domains

of super-secondary structure of single strands

Domain swapping as cause of aggregation

Antithrombin

active

inactive form

Antithrombin

- Protease inhibitor of the Serpine class
- spontaneous inactivation by inserting the active site loop as β-strand into a pre-formed β-sheet
- inter- instead of intramolecular insertion
 - → aggregation

Stability of oligomers - dissociation equilibrium

Dimerization of Hexokinase

 $2 M \Longrightarrow D$

Reaction:

Glucose + ATP
$$\rightleftharpoons$$
 Glc-6-P

$$K_D = 0.15 \times 10^{-6} M$$
 (without cofactor)

$$K_D = M^2 / D$$

$$D = M^2 / K_D$$

$$D = \frac{M_{tot} - M}{2}$$

$$M^2 + 0.5 K_D M - 0.5 K_D M_{tot} = 0$$

$$M = -p / 2 + \sqrt{(-p / 2)^2 - q)}$$

$$S = S_0 + dS_{max} * 2D/M_{tot}$$

Stability of oligomers - dissociation equilibrium

Fab - antigen

antigen: creatine kinase measurement: enzyme activity

PTH - PTH receptor

measurement: fluorescence titration

$$R + L \Longrightarrow RL$$

RL = -p / 2 +
$$\sqrt{(-p / 2)^2 - q}$$

 $p = (R_0 + L_0 + K_D) / 2$
 $q = R_0 L_0$
 $S = S_0 + dS_{max} * RL/R_0$

;;

Stability of oligomers - unfolding

$$N_2 \rightleftharpoons 2 U$$

$$K_{\rm U} = [{\rm U}]^2/[{\rm N}_2] = 2P_t[f_d^2/(1-f_d)]$$

$$\Delta G^{D} = -RT \ln K_{U}$$

Dimeric antibody C_H3 domain

Rates of association

Diffusion limit of protein association (random diffusional collision): 10⁹ M⁻¹s⁻¹ (chaperone-substrate interaction)

Subunit mass (kDa)	Reaction	$k (M^{-1}s^{-1})$
27	2M -> D	3×10^{5}
33	$2M \rightarrow D$	3×10^4
76	$2M \rightarrow D$	1×10^{4}
116	$2M \rightarrow D$	4×10^{3}
40	$2M \rightarrow D$	2×10^{3}
27	$2M \rightarrow D$	6×10^{3}
	2D -> T	3×10^4
36	$2D \rightarrow T$	2×10^4
62	$2M \rightarrow D$	1×10^{7}
12	$2M \rightarrow D$	3×10^{8}
	27 33 76 116 40 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Homo- versus hetero-dimerization

only relevant if the two subunits are highly homologous (gene duplication)

Bacterial Luciferase

black: B2 homodimer

green/red: α/β heterodimer

Table 2. Intersubunit hydrogen bonds in the β_2 homodimer and the equivalent interactions in the $\alpha\beta$ heterodimer

Subunit 1		Subunit 2		Bond Distance	α subunit	
Residue	Atom	Residue	Atom	(Å)	Residue	Atom
Ser 17	Ογ	His 161	N ^{δI}	3.0	ь	
Asp 18a	$O^{\delta 1}$	Gln 95	$N^{\epsilon 2}$	2.7	Thr 18	O^{γ}
Asp 18 ^a	$O^{\delta 1}$	Gln 95	O^{ϵ_1}	3.2	Thr 18	O^{γ}
His 45 ^a	$N^{\delta 1}$	Glu 88	$O^{\epsilon 1}$	2.7	His 45	$N^{\delta 1}$
His 45 ^a	$N^{\delta t}$	Glu 88	$O^{\epsilon 2}$	3.3	His 45	$N^{\delta 1}$
Thr 80 ^a	O	Arg 85	$N^{\eta 2}$	2.9	Thr 80	O
Thr 80°	O_{λ}	Arg 85	$N^{\eta 2}$	2.6	Thr 80	O^{γ}
Phe 116	O	His 82	N ^ε	2.6	Val 116	0
Ser 47ª	O	Asn 159	$N^{\delta 2}$	3.1	None	

^aThe two-fold related hydrogen bonding interaction is also observed at the subunit:subunit interface for these pairs of atoms with comparable geometry and hydrogen bond distance.

Reason for heterodimerization:

kinetics of a/ß association 10 times faster than ß2 association

^bThe equivalent side chain in the α subunit (Gln 17) forms a structurally nonequivalent hydrogen bond to the amide nitrogen of His 161.

Homo- versus hetero-dimerization

only relevant if the two subunits are highly homologous (gene duplication)

Lactate dehydrogenase (LDH)

2 isoforms in sceletal muscle and heart (LDH-M and LDH-H)

Hybrid formation of M- and H-type upon association of equimolar conc.:

 M_4 M_3H_1 M_2H_2 M_1H_3 H_4 1:4:6:4:1

Amyloid structures - fibril formation

- structure of amyloids
- mechanism of fibril formation
- inhibition of fibril formationtherapy

Amyloid structures - diseases

Disease	Protein
Morbus Alzheimer	APP/Alzheimer-β-Peptid (1-40, 1-42, 1-43); Tau-Protein
Transmissible Spongiforme Enzephalopathie (CJD, Kuru, BSE, Scrapie) - TSE	Prion-Protein
Chorea Huntington	Huntingtin
Morbus Parkinson	α-Synuclein

Amyloid structures - diseases

Disease	Protein
Injektionslokalisierte Amyloidose	Insulin
β-2-Mikroglobulin-Amyloidose	β-2-Mikroglobulin
Vererbbare Cerebrale Amyloide Angiopathie	Cystatin C
Primäre Asystemische Amyloidose	Immunglobulin
Finnische Vererbte Systemische Amyloidose	Gelsolin
Atriale Amyloidose	Atrial Natriuretic Factor
Familiäre Amyloide Polyneuropathie	Transthyretin
Medullaria-Carcinom der Schilddrüse	Calcitonin
Vererbbare Nichtneuropathische Amyloidose	Lysozym
Diabetes mellitus Typ II	Islet-Amyloid-Polypeptid
Reaktive Asystemische Amyloidose	Lipoproteine
Cleidocraniale Dysplasie	Transkriptionsfaktor CBFA1
Vererbte Renale Amyloidose	Fibrinogen
Okularpharyngeale Muskeldystrophie	Poly(A)-Bindungsprotein II

Fibrillation of Transthyretin

Homotetramer transporting thyroxine

fibrillation - pH < 4.5 (wt)

- pH 7 (mutants)

Fibrillation-competent state of Transthyretin

H/D exchange experiment:

completely deuterated protein

dilution into buffer at 8 µg/ml pH either pH 4.5 or pH 5.8

shift to native conditions, concentrating to 10 mg/ml

Amyloid state of a Transthyretin peptide

Solid state NMR (magic angle) of a transthyretin peptide within fibrils

 \rightarrow elongated structure (β -sheet)

peptide 105-115 of transthyretin

Amyloid model of \(\mathbb{B}2\)-microglobulin (\(\mathbb{B}2M)\)

Aggregation of proteins

High level production of recombinant proteins in *E. coli* often leads to formation of inclusion bodies (ib's)

Electron micrograph of antibody producing E. coli

Kinetic competition of folding and aggregation

Yield = k1 / (k2 x [U]) x ln(1 + k2 x [U])

Effect of PEG on IFNy

relative yield

Kinetic competition of folding and aggregation

Effect of Arginine on protein association / aggregation

preferential binding

prevent aggregation but destabilize structure

"gap effect" slows aggregation kinetics

stabilize structure
but
often induce aggregation
upon renaturation

water

Literature

Interactome Li et al.: A map of the interactome network of the metazoan

C. elegans. Science. 2004 Jan 23;303(5657):540-3

Cyclosporin synthetase Dittmann et al.: Mechanism of cyclosporin A biosynthesis.

Evidence for synthesis via a single linear undecapeptide precursor.

J Biol Chem. 1994 Jan 28;269(4):2841-6.

Topology of oligomers Powers et al.: A perspective on mechanisms of protein tetramer

formation. Biophys J. 2003 Dec;85(6):3587-99.

inter-subunit interfaces Larsen et al.: Morphology of protein-protein interfaces.

Structure. 1998 Apr 15;6(4):421-7.

coiled coils http://speedy.embl-heidelberg.de/cgi-bin/coils-svr.pl

domain swapping: Liu et al.: 3D domain swapping: as domains continue to swap.

Protein Sci. 2002 Jun;11(6):1285-99.

antithrombin Carrell et al.: Biological implications of a 3 A structure of dimeric

antithrombin. Structure. 1994 Apr 15;2(4):257-70.

stability of dimers Neet & Timm: Conformational stability of dimeric proteins:

quantitative studies by equilibrium denaturation.

Protein Sci. 1994 Dec;3(12):2167-74.

rates of association Lilie, H. & Seckler, R. (2005) Folding and association of

multi-domain and oligomeric proteins.

in Textbook of Protein Folding (eds.: J. Buchner and T. Kiefhaber),

Wiley VCH, part II, Vol. 1, 32-72.

Literature

Homo-/heterodimerization Lilie, H. & Seckler, R. (2005) Folding and association of

multi-domain and oligomeric proteins.

in *Textbook of Protein Folding* (eds.: J. Buchner and T. Kiefhaber),

Wiley VCH, part II, Vol. 1, 32-72.

amyloid transthyretin Liu et al.: A glimpse of a possible amyloidogenic intermediate

of transthyretin. Nat Struct Biol. 2000 Sep;7(9):754-7.

amyloid model of ß2M Ivanova et al.: An amyloid-forming segment of beta2-microglobulin

suggests a molecular model for the fibril.

Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10584-9.

aggregation / arginine Baynes & Trout: Rational design of solution additives for the

prevention of protein aggregation. Biophys J. 2004 Sep;87(3):1631-9.

Baynes et al: Role of arginine in the stabilization of proteins

against aggregation. Biochemistry. 2005 Mar 29;44(12):4919-25.